MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY (Autonomous Institution – UGC, Govt. of India) UG Model question paper-I ELECTRICAL CIRCUIT ANALYSIS EEEII YEARI SEMESER

Time: 3 hours

Max Marks: 70

Note: This question paper contains of 5 sections. Answer five questions, choosing onequestion from each section and each question carries 14 marks.

5*14=70M

SECTION-I

1. a) For the circuit shown below Figure, find the current equation when switch S is opened at t = 0. [7M]

b) Explain the DC response of series R-C circuit with neat waveforms. [7M]

(**OR**)

2. a) In the given circuit the switch is opened at t=0.Find [7M]

(i) $V_{ab}(0-)$ (ii) $i_x(0-)$ (iii) $i_x(0+)$ (iv) $V_{ab}(0+)$ (v) $i_x(t=\infty)$ (vi) $i_x(t)$ for t>0.

b) In the given circuit the switch is shifted from position 1 to 2 at t=0.Determine i(t) for t>0.[7M]

SECTION-II

3. Explain the transient response in time domain with sinusoidal excitation as input for a RC circuit. Draw the voltage waveform across R and C.[14M]

(**OR**)

4. Explain the transient response in time domain with sinusoidal excitation as input for a RL circuit. Draw the voltage waveform across R and L.[14M]

SECTION-III

5. a) A balanced delta-connected load has a phase current $I_{AC} = 10 \angle -30^{\circ}$ A:[7M]

i) Determine the three line currents assuming that the circuit operates in the positive phase sequence.

ii) Calculate the load impedance if the line voltage is $V_{AB} = 110 \angle 0^0$ V.

b) A balanced star-connected load absorbs a total power of 5 KW at a leading power factor of 0.6 when connected to a line voltage of 240 V. Find the impedance of each phase and total complex power of load.[7M]

6.a) The unbalanced -load as shown in Figure 4 below is supplied by balanced voltages of

200V in the positive sequence. Find the line currents. Take V_{ab} as reference.

[7M]

b) Prove that two watt-meters are sufficient to measure power in three phase system.[7M]

SECTION-IV

7. Explain about Series Resonance in detail along with quality factor and band width.[14M]

8. Draw the locus diagram of series R-L circuit and R-C circuit when R is variable.[14M]

SECTION-V

9. For the network shown below figure, 'S' is switched on at t=0. Find the driving point impedance and source current in s-domain.[14M]

- 10. a) List the necessary conditions for transfer functions.[7M]
 - b) Find the pole zero locations of the current transfer ratio $I_2\ /\ I_1\$ in s- domain for circuit [7M]

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY (Autonomous Institution – UGC, Govt. of India) UG Model question paper-II ELECTRICAL CIRCUIT ANALYSIS EEE II YEAR I SEMESER

Time: 3 hours

Max Marks: 70

Note: This question paper contains of 5 sections. Answer five questions, choosing onequestion from each section and each question carries 14 marks.

5*14=70M

[7M]

SECTION-I

1. a) The switch in the figure has been in position *a* for a long time, At t = 4 s the switch is moved to position *b* and left there. Determine v(t) at t = 10 s. [7M]

- b) The switch in Figure was open for a long time but closed at t = 0. Determine:
 - (i) i(0+), v(0+),
 - (ii) (ii) $i(\infty)$, $v(\infty)$.

(**OR**)

2.a) The switch in figure has been in position A for a long time. At t = 0, the switch moves to B. Determine V(t) for t > 0 and calculate its value at t = 1 s and 4 s.[7M]

b) At t = 0, switch 1 in Figure 8 is closed, and switch 2 is closed 4 s later. Find i(t) for t > 0. Calculate i for t = 2 s and t = 5 s. [7M]

SECTION-II

3. Derive the expression for the current in a series RL circuit ($R = 10\Omega$, L = 10 mH) excited by a sinusoidal voltage of 100V, 50 Hz if the supply is connected at t = 0. Assume zero initial conditions. **[14M]**

(**OR**)

4. Derive the expression for the voltage across the capacitor in a series RLC circuit ($R = 5\Omega$, L = 5 mH, $C = 5\mu\text{F}$) excited by a sinusoidal voltage of 100V, 50 Hz if the supply is connected at t= 0. Assume zero initial conditions. [14M]

SECTION-III

5.a)Three impedances each of (10+j3) ohms are connected in star to a 220 V, 3-phase,50 Hz supply. Calculate the line currents and power delivered to the load.**[7M]**

b) Derive the relation between phase and line values of a 3-phase balanced delta connected system. [7M]

(**OR**)

6.a)Explain the measurement of power in a balanced 3-phase system using a single watt meter.[7M]

b) Three coils each having a resistance of 50 Ω and an inductive reactance of 45 Ω are connected in star and fed by a 3-phase, 400 V, 50 Hz system. Find

i) Line current

ii) Power

iii) Power factor

[7M]

SECTION-IV

7.Explain about Parallel Resonance in detail along with quality factor and band width.[14M]

(OR)

8. Draw and explain about the locus diagram of parallel R-C circuit and R-L circuit when R is [14M] variable.

SECTION-V

- Explain the concept of Complex Frequency.[7M] 9. a)
 - b) Find the Transfer Impedance function for the network given below.[7M]

(**OR**)

Find the Driving Point Impedance, Transfer Impedance and Voltage Transfer 10) Function for the circuit given below.

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY (Autonomous Institution – UGC, Govt. of India) UG Model question paper-III ELECTRICAL CIRCUIT ANALYSIS EEE II YEAR I SEMESER Durs Max Marks: 70

Time: 3 hours

Note: This question paper contains of 5 sections. Answer five questions, choosing onequestion from each section and each question carries 14 marks.

5*14=70M

SECTION-I

1 a) In the circuit shown figure, the capacitor voltage just before t = 0 is

[7M]

b) The switch in the figure 3 has been open for a long time. It is open at *t* = 0, the[7M] value of v(∞).

(**OR**)

2. a) Deduce the transient response of RL series circuit excited by DC source.[7M]

b) In the network shown in the figure below, the switch is closed at t = 0. Find the[7M] values of i1(t) and i2(t) assuming zero initial currents through inductors.

SECTION-II

3. What is damping ratio? Derive the time constant for a parallel RC circuit excited by AC supply. [14M]

(**OR**)

4. What is the condition for the response of a series RLC circuit excited by DC supply to have critically damped response? [14M]

SECTION-III

5. a) Two watt meters connected to a 3- phase motor indicate the total power input to be 12 kW. The power factor is 0.6. Determine the readings of each wattmeter.[7M]

b) If $\mathbf{V}_{ab} = 240 \text{ V} \angle 15^{\circ}$ for the circuit shown figure 1 below, what is the value of I_{ab}. [7M]

6. a) Explain about three phase system? List out the merits of three phase system.[7M]

b) Three coils, each having resistance of 25Ω and inductive reactance of 10Ω are connected in Star to a 400V, 3-phase, 50Hz AC supply. Calculate the power supplied.[7M]

SECTION-IV

7. Explain about Series and Parallel Resonance in detail along with quality factor and bandwidth. [14M]

(**OR**)

8. Draw and explain about the locus diagram of Series R-C circuit and R-L circuit when X_L is variable. [14M]

SECTION-V

9. What is the driving point and transfer impedance of the network shown figure below?[14M]

(OR)

10. Find the expression for voltage transformation ratio for the network shown in figure [14M]

